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The effect of condensation and evaporation on the viscous-convective subrange is investigated using
a general mean-field approximation that is consistent with the nonhomogeneous vertical structure of
the condensate’s first and second moments and experimental observations of mean vertical flux in
a condensation cloud. Expressions for the scalar density in the Batchelor limit are derived and used
to reproduce the spectral behavior of new atmospheric measurements that exhibit anomalous scaling
of cloud liquid water in the near inertial-convective regime. Good agreement between the model and
data are obtained when axisymmetric Kraichnan transfer of scalar variance is balanced by
axisymmetric production by condensation/evaporation resulting in an isotropic contribution to the
real (homogeneoyspart of the spectrum. The model also assumes a significant imaginary
(nonhomogeneoysomponent to the spectrum that is indicative of a strong vertical coherence in
condensation clouds. A “production subrange” is predicted in which the scalar dissipation rate
increases with increasing wave number and the usudaliscous-convective scaling evolves into an
anomalous—3 regime. The strongly nonhomogenedasisotropi¢ character of the predicted
scalar spectrum is in stark contrast with atmospheric models of inertial-convective regime cloud
inhomogeneity that are used in radiative transfer calculations and are typically isotropR00D
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I. INTRODUCTION regions of high strain and low vorticity in a turbulent flow.
However, a recent analysis of the effect of particle inertia on
Recently, Davisetal! presented horizontal spectra the viscous-convective subrange by the adtdemonstrates
#(ky) of cloud liquid water contenLWC) measured at an that increased clumping of particles is associated with the
unprecedented resolution of 4 cm during the winter Southerguppression of viscous-convective scaling at near inertial-
Ocean Cloud ExperimentSOCEX. The scalar spectrum convective scales, i.e., the movemenkgto smaller scales.
from the ensemble-average of the flight segments shown imhus the data of Fig. 1 and the predictions in Ref. 4 are
Fig. 1 (J) exhibits two distinct scaling regimes: Kolmog- clearly at odds. Gerbeet al® suggests that the enhanced
orov scaling ¢ 3) is evident at larger scales and viscous-\WC variance at small scales is related to the small-scale
convective like scaling{ 1) is visible at the smallest scales. entrainment features generated at cloud boundaries. How-
Although these spectral scalings are of no surprise, the scalger, as they admit, the spectral density distribution of en-
break between the inertial-convective and viscoustrainment scales and the in-cloud volume affected by entrain-
convective regimes, estimated by Daeisal® to occur at  ment and mixing are not known. Magiproposes that the
2-5m (,~0.002;"*, 7=Kolmogorov length, is anoma-  non-inertial-convective scaling is caused by the temporal re-
lous. Normal viscous-convective scaling, also shown in thgaxation of the supersaturation to its steady-state value with
figure (-), intersects the inertial-convective subrangek@t  e-folding time,r, . Mazin argues that for updrafts with deco-
~0.057"* which corresponds to an-space transition of rrejation timet< 7, the time is too short for a significant
around 10 cm in the atmosphere. Thus the observed scalgnount of phase change to occur and the turbulent laws for
break occurs at scales one order of magnitude larger than thg, inert scalar apply, whereas for 7, the supersaturation is
standard theory predicts. What is particularly intriguing cjose to its steady value and the cloud LWC behaves like an
about these new observations are the implications for thgyert scalar with a vertical mean gradient. For time scales
scalar dissipation ratg; with the new scale brealy in the  |gse tor, the —2law is violated. However, two aspects of
viscous-convective regime is a factor of 14 larger than the,azin's hypothesis are questionable. First, the linear in-
inertia}l-convectivex, suggesting thatasogrce of scalar vari- crease of LWC variability with height above cloud base
ance Is present on scales of tens of centimeters. ~ demonstrates that a condensation cloud is fundamentally dis-
Marshak et al® suggests that the strong variability tinct from an inert scalar with an imposed mean gradient as
shown in F|g.31 on scales of 4 cro % m isconsistent with  giscyssed later, and that this distinction is present over a
Shaw etal's® discussion of a strong preferential e range of scales. Thus, the scaling for tiesr, is just
concentration—the accumulation of inertial cloud droplets ingg likely to be anomalous as for times O(7,). Second, it is
not at all clear whether a change in the Lagrangian spectrum
dElectronic mail: cjeffery@eos.ubc.ca of supersaturation at temporal scales(fr,) will, in fact,
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g source term for the advection-diffusion equation of the form:
source= velocityX d{ 0 (x) O (y) )/ ix3.
w ] Cil:/fi;e CZ;s::cl’lis;e The above example illustrates an important distinction
Subrange Subrange between homogeneous, isotropic, incompressible mixing of a
o New Regime? passive scalar in a rt_eactlng_ s_yst(sa:(_)ndensatlon cloudanq
—_~T in an inert system with an initially imposed scalar gradient.
% The density fluctuations in the latter are stationary, aniso-
£ Q- tropic and homogeneous—properties that follow immedi-
- ately from the incompressible advection-diffusion equation.
S- — &) Furthermore, the initial mean scalar gradient is maintained.
o In contrast, the density fluctuations in the former are station-
“ ary and anisotropic, but not homogeneous—mean-square
7] density fluctuations increase in the direction of increasing

T T T T T mean density. Thus, although the mean density profiles of
0.00001 0.001 0.1 the two systems may be identical the statistical properties of
the density fluctuations are not.
FIG. 1. Ensemble-averaged 1D scalar spectrum for cloud LWC data mea-  The present model, although limited to wavenumbders
sured during the SOCEX field program and first presented in Ref. 2. A=k, predicts that the LWC correlation function has an im-
typical atmospheric value of 0.76 mm is assumed for the Kolmogorovportant nonhomogeneous, vertical contribution from a term
Ieng_th 7. Also shown is the usual 1D |nert|aI-convectlve/wscous-convectlveIinear inr,. This general behavior agrees well with aircraft
scaling calculated using=5.5 (Sec. IV) and B=3/4 (Sec. V). The ob- 3 10 . : . _13 ;
served spectrum is a factor of 14 greater than the normal spectrum in neeasurements'® and numerical simulation$™*® which
viscous-convective regime. demonstrate that both the mean and root-mean-square LWCs
in atmospheric clouds increase linearly with height.
The closure used in this study to evaluate LWC covari-
ance is appropriate for the viscous-convective subrange and
lead to changes in the Eulerian spatial spectrum. was used in Ref. 4 to study the effect of particle inertia on
In this work, | propose that the anomalous scale break ispatial covariance. However, the results of this work are not
caused by the effect of condensation and evaporation on scdirectly applicable to the inertial-convective regime. Mar-
lar variance. Unlike other theories of condensation/shaket al? have analyzed the radiative implications of an
evaporation effects on cloud microphysics, e.g., phase relaxextended viscous-convective regime and found that LWC
ation timé or buoyancy reversdlthe model proposed here variability at scales less than the photon mean-free path
does not invoke nonstationary, nonequilibrium, discrete 0f20—30 m) introduces an insignificant bias from complete
nonlocal phenomena such as sedimentation, buoyancy, ehemogeneity. This is not surprising considering that liquid
trainment or a noncontinuous droplet field. Rather, thewater obeys inertial-convective scaling, and therefore most
present model is fundamentally a mean-field approximatiorof the variability is contained in the largest scales. On the
that relates the complex process of condensation/evaporatiather hand, the results of this study, although limited to small
to the mean vertical structure of liquid water in the cloud.scales, call into question the important and commonly made
Thus the present model is akin to Lagrangian parcel modelassumption of isotropy in the spatial statistics at large scales.
where condensation/evaporation is largely dictated by thén particular, the important vertical, nonhomogeneous com-
vertical velocity and the average environmental conditiongonent to the LWC correlation function predicted by the
inside the parcel. The present model decouples LWC produgresent model is, of course, anisotropic. The extent to which
tion from the vapor and temperature fields, therefore, watedensity fluctuations at larger scales may be considered lo-
vapor and temperature are represented by only their first mazally isotropic may have important implications for radiative
ments through the equilibrium vertical liquid water structure.transfer.
In fact, it should come as no surprise that anomalous Most radiative transfer calculations to date that incorpo-
viscous-convective scaling is observed in clouds if one conrate LWC inhomogeneities assume isotropic variability. For
siders that condensation/evaporation is an asymmetric inteexample, Barkeet al!* has developed a modeling technique
nal pumping coupled to a large Reynolds numiiee), iner-  where the inhomogeneity of the cloud field is calculated
tial velocity field that exhibits a continuous range of scalesfrom a 1D time series of the extinction coefficient from air-
As a result of this coupling, production of LWC will occur craft measurements and then extended to three dimensions
over a wide range of scales. on the assumption of isotropic variability. His results suggest
Conceptually, it is not hard to see how condensatiorthat internal homogeneity reduces cloud albedo and absorp-
through lifting can create liquid water variance. Consider ation. The above mentioned study by Marsteilal2 analyzes
fluctuating(mean zerpvariance® (x) ® (y) where the verti- the radiative effects of sub-mean-free path liquid water vari-
cal velocitiesu;(x) andus(y) are both positive. As the par- ability using singular and bounded fractal models of LWC
cel rises® at bothx andy increases through condensation, that are also isotropic. The importance of including internal
and the variance grows. Thus condensation/evaporatiovariability in radiative transfer calculations is emphasized in
coupled to vertical advection leads to a self-excitation ofRef. 15.
LWC variance; in Sec. Ill we derive an advection-type Barker* justifies his assumption of isotropic variability
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by commenting that “Since the corresponding temperaturé ¢s.) and its vapor {,). Condensation/evaporation occurs as
and liquid water content wave-number spectra follow’® 3 result of imposed vertical gradiemAEE(;(gEe3) in the tem-
closely, it may be safe to assume that the associated turbgerature, pressure and vapor fields. Without loss of general-
lence is approximately isotropic.” This statement implies ajty we can consider the cadg =V,=0 because of the Gal-
strong correspondence between local isotropy in the velocijean invariance of Eq.(1). We will assumeV;=0. In
ties and in the scalar field. However, it has recently beemyeneral, CE is a function of(t,x), #,(t,x) and the mac-
establishetf~**that the local isotropy central to Kolmogorov roscopic temperature fielfi(t,x) as well as a host of micro-
theory does not hold for a passive scalar field with an im-scopic parameters including the saturation vapor-pressure,
posed mean gradient. In fact, a large anisotropy persistshe diffusivity of heat and vapor and the latent heat of
even at very small scales and very high Reynolds numbergvaporatiorf* Furthermore, in a closed system CE is nonsta-
and is evident in the skewness of the scalar derivative in thgonary because it is coupled throudift,x) to irreversible
direction of the mean gradient. Purffircompares the 1D  thermodynamic processes, while, on the other hand, in an
spectra in the direction parallel and perpendicular to theypen system the spatial structure of CE has a non-trivial
mean gradient and finds clear differences. Although botljependence on the thermal boundary conditions. To remove
spectra exhibit a limited inertial-convective subrange, differ-some of this complexity, we consider a simplified model for
ences persist from the smallest to the largest scales. CE that is decoupled from bot, andT and hence station-
The present study suggests that in condensation cloudgy, i.e., thermodynamics are reversible. The model is based
the dominant anisotropy in the spatial correlations is a manion the following deterministic equation for the vertical struc-
festation of the nonhomogeneous vertical density fluctuature of i, :
tions. To the best of my knowledge, the only radiative trans-
fer calculations that incorporate vertically nonhomogeneous ‘9_‘/’c: Pie 2
inhomogeneities are those of Hignett and Ta§ldhat are 0z z’
based on Barker'$ isotropic technique. Hignett and
Taylo”® model nonhomogeneous vertical LWC fluctuations
by scaling the magnitude of the extinction coefficient with
height above cloud base, and then compare the model pr
dictions of reflectance and albedo withsitu aircraft radio-
metric observations of the same cloud. As in Ref. 14 the

zri(;hi mrtetimﬁlal:(;]z\r:?gfrliggﬁnIila:)dudtotr:nsrfnoiltligagg "MNand as such, ignores nonlocal effects including entrainment
© Sorptio " _of "non-cloud” environmental air at the boundaries of the

resenting condonsatonevaporation 1 mroduced i Sec, |PYSeM: The resulling vertical siucture fod, (4e(2)
nting /evaporal . " "+ 7zP, can be compared to experimental measurements of the
and in Sec. Il the resulting equation for the correlation func-

h . Lo . . system in question to determine the sign and magnituge of
tion in the Batchelor limit is derived. Also in Sec. Il | y q 9 gnituge

. . | Using a/dz= al dxg=u 19l ot gives

present an approximate analytic form for the correlation 9 3T 9
function that illustrates the general anisotropic and nonho- pus
mogeneous properties of the full solution whose derivation CE= T¢c- ©)
follows in two parts. In Sec. IV, | derive a general axisym- .
metric solution for the spectral density without the newNote that the dependende./dt~usi/z of (3) is also ex-
source term for both the viscous and inertial-convective subhibited by Lagrangian parcel models of diffusional growth of
ranges while the contribution from the new source term igvater drops in clouds wherey./dt~(yc/a)da/dt~ g/t
determined in Sec. V. In Sec. VI the magnitude of the axi-~W#c/2 ais the radius of the drop, and is the vertical
symmetric contributions to the spectral density are detervelocity of the parcef! There are a number of experimental
mined using the new data shown in Fig. 1. Sec. VIl is aand numerical studies that report the vertical distribution of

. . . . inci ,25-27
discussion of the predicted spectra, and Sec. VIIl is reserveBWC inside stratus and stratocumulus clofids:**~*7 Al
for conclusions. these observations and model predictions show that the mean
cloud liquid water increases nearly linearly with height from
cloud base corresponding po=1 in Eq.(2), and, therefore,
the advection-diffusion equation for this system is

wherez(x,,X5) is the height above cloud base gné R is a
constant. Equatiof2) states thaty,(x+ Az) is related to its
neighboring density/.(x) through condensationp(>0) or
%i/aporation 0<<0), processes controlled by the vertical de-
endence o and, which are assumed nonstochastic, i.e.,
(X)=(T(2)). Thus Eq.(2) is a mean-field approximation,

Il. CONDENSATION/EVAPORATION SOURCE TERM

The density of a condensatg.(t,x) e R, =[0,©) in an i u
incompressible velocity field is described by the advection-  —C +u. V.= DA o+ — i . (4)
diffusion equation, at z
e In this work we examine the second-order ensemble mean
r +U-Viy.=D A+ CE ¢ i), (1) moments ofy, as described by Ed4).

The ensemble-averaged advection-diffusion equdtipn
where U=V+u is a random velocity fieldy=(U) is the  with CE given by(3) does not predic{i(z)); the connec-
mean velocityD. e R, is the molecular diffusion coefficient tion between CE and the mean vertical structuregffol-

and CE is a source term that models condensatign ( lows from deterministic Eq.2). However, using Eq<1) and

— ) and evaporation .— #,) between the condensate (3) and assuming stationarity and horizontal homogeneity,
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we find that the vertical flux of condensate obdysiy.) oD

~2zP. Thus with an appropriate choice pf the mean-field |=2[D3n(0)—D3n(f)]Zle, (7)

source term for condensation and evapora{®reproduces "

the experimentally observed vertical flux of condensate in

the system of interest. Observatioli&’?’ and numerical which has the form of an advection term. It is illustrative to

studies®#2% of atmospheric clouds demonstrate that thecompare the velocity/cg=2[ D3,(0)— D3,(r) ]z~ * with the

mean vertical flux of LWC is approximately linear mi.e.,  velocity Vp,=43dD,(r)/dr, caused by particle inertigeq.

p=1 as above. The vertical dependencéwfi) is consis-  (6) in Ref. 4]. Ignoring the anisotropic nature of the former,

tent with the discussion in Sec. | in that density fluctuationsthe two velocities scale according ¥eg~r2 andVp,~r in

in a condensation cloud are nonhomogeneous. the viscous regime, andcg~r?® andVp,~r~*3in the in-
ertial regime. Thus evaporation/condensation is a source of
scalar variance that increases with increasingnfrared di-

Il. &CORRELATED CLOSURE vergencg, whereas the effect of particle inertia is limited to
scalesO(7).

Motivated by the new experimental data discussed in  The general behavior of E@6) with | given by (7) is
Sec. |, we consider the small-scale, large Prandtl nurtid®r  worthy of some discussion. First, note that the viscous-
behavior of Eq.(4). It has been shown both numericdfly*  convective scalingb = constant is the trivial solution af6)
and theoreticallysee Ref. 4 and references thejdimat the  with or without the source terrh Thus a normal viscous-
“correct” closure in this so called Batchelor limit is the convective subrange is one prediction of the present model.
o-correlated closure which predicts the well-known viscous-However, a cloud with a vertical mean-gradient is axisym-
convective subrang®. The S-correlated model derives its metric about thee; axis, and therefore we can expebtto
name from the temporal properties of the velocity fieldcontain contributions from odd-order terms iig. Further-
which are assumed to rapidly decorrelate in time. A rapidlymore, the experimental data in Ref. 1 suggests that the non-
fluctuating velocity field can be derived formally through the homogeneous vertical component®fwhich does not con-
velocity field renormalization(t,x) = e 'u(e *t,x) where tribute to the horizontal scalar spectrum disrupts normal
the molecular diffusivityD is not rescaled @.=D) and viscous-convective scaling. Thus we can assume that there
where the long time rescaling 2 is chosen to reproduce the are other nontrivial contributions t@b in the viscous-
conventional or normal diffusiofix?(t))~t associated with  convective regime. Second, note that simeez, z(X;,X,)

a mean field regim& Under certain general conditions the can be treated as a constant parameter independenf ofe
random fieldu(t,x) converges to a white noise process inassume that has a term®’=c,zr; with ¢;>0 which is
the sense of distributions, i.e., consistent with aircraft measureméht and numerical
M (U(t+8, X+ 1) UL(t,X)) = 278(S) (U NU)),  (B) simulations*~**that show increasing LWC fluctuations with
=0 increasing height, theh(®') becomes

wherer is the renewal time and<|, wherel is the integral

length scale. It follows trivially that the rescaled Eulerian

correlation time lim_o7e~ € is much less than molecular I(P’)=2c1[D3z(0)—Dayr)],

diffusion time, and, therefore, this renormalization corre-

sponds to the large Pr limit. L . . o .
d which is a positive source that increases with increasing

The key simplification afforded by thes-correlate Th |t f th luti f E66) keepi
model is that the non-Markovian statistics of tracer trajecto- e general form of the solution of E€6) keeping terms

ries arriving at {,x) from neighboring points<+Ax and greater tharz! and ignoring molecular diffusion then be-
from past timeg — At become Markovian, Eulerian statistics comes
at (t,x).* As a result, each of the tracer particles in an in-
compressible flow field undergoes an effective Brownian
motion in this limit and the first- and second-order moments
of the passive scalar fieldgnoring any source term®bey
diffusion equations**® The diffusion equation for the wherec,>0 and the signs of, andcs have yet to be de-
second-order correlation functish=(0(x)0(y)) is’ termined. By definition the horizontal correlation function
29 ®(rq,,r,) as well as the horizontal viscous-convective spec-
+1, (6) tral scaling is independent of; only the effects of the first
and last terms in Eq8) are evident in horizontal measure-
where ® = .— (i), | is the contribution from any source ments. It is important to emphasize that E§) is not the
terms,r=y—x, and D ,(r) ={7u,(0)u,(r)). Note that the solution of Eq.(6) but only illustrates the generaiz or in
conventional Reynolds stressé®u,)d(.)/dx, that nor-  Fourier spaceé-z scaling that appears later when more rig-
mally couple® to mean-gradients in the passive scalar fieldorous methods are used. However, the picture that emerges
do not contribute in thej-correlated model. Following the from this analysis is robust—a nonhomogeneous component
procedure outlined in Ref. 4 and references therein, the-r; of ® that isz/r larger than the homogeneous compo-
source termus./z of (4) in the rapid decorrelation in time nents changes the nornie{% horizontal viscous-convective
limit becomes spectral scaling.

®(r,rg,z)~Co+CqZr3+CoCir3+ C3Cer2, (8)

9D
——=2DV2® —2[ D (0) = D y(1)]

at MXm@Yn
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IV. AXISYMMETRIC KRAICHNAN TRANSFER The general solution of Eq$11) and (12) can be ob-

. o . tained using the method of separation of variables:
We begin the derivation of the spectral covariance den-

sity functionW (k) = (2) ~3fdrd(r)exp(ik-r) by consid-

[

ering the axisymmetric solutions @6) without the source ‘If(k,,u,)=j20 ¢;Bj(k)Pj(x),
terml.
_ _ _ , %P, P,
A. Viscous regime solution 0=(1—pu )F—Z,umﬂ(] +1)P;, (15
. s L M
Assuming the velocity field is divergenceless, homoge-
neous, and isotropic, the equal-time correlation function can J9°B. IB:
. 36 21,2 2 J J s
be writterf" A°kBj=k W+4kW_ZJ(J+1)Bjy (16)
r oF (s = eCi i i-
(U (X)Un(X+ 1)) =Dl St = — | Sman— m2n where u cos_ﬁ and_ ¢c;e C is an arbitrary consta_nt. Immedl
2 or r ately we can identity?; as a Legendre polynomial since Eq.

(9) (15 is the familiar Legendre equatidi.The Fourier space
I = *(_— I !
WhereDT=u37/3, Ug is the characteristic velocity of turbu- symmetry re_Iauon*lf(k) W (k) restricts thecy's such
; . ) . . that for evenj, Re{c;} e R, and Im{c;} =0, whereas for odd
lent fluctuations with relaxation time, and the function . Re(C}=0 Thusj the odd termsj represent the verticall
F(r) is the longitudinal correlation coefficient. In the Viscousjr;onhorjno_ eﬁeous component of the Z ectrum. whereas )t/he
regime the following choice of parameters recovers the 9 b > SP '
viscous-convective  spectrufn: 7=|y|" Y6, F(r)=1 even terms are homogeneous contributions. Note that for a

~a(rl7)? and a= 7]2/(1272“%) where y= —(1/q)7-;1 is passive scalar field in homogeneous turbulence with an im-

the average value of the least principal rate of strain,cpisd poseEd S;?ii?] ?{g)d'f% r;t Igheisd: tg;r:sselarte Izegtliigo%\c\z.th
a universal constant for high Reynolds number fIGiwRe- g J ype €q

. . . 30,31 . SOlUtiOl’?g BJ = k73/2K V(J)()\ k) where V(] ) = [9+ 8] (J
cent numerlc_al S|_mulat|ons _suggest:5.5._ Insertl_ng Eq. +1)]¥2/2. Note that theP;’s satisfy [~ ,duP: () =26(j)
(9) into (6) with viscous-regime correlation coefficients and . J . ] .

so that only thg =0 term contributes to the spherically av-

=0 gives eraged spectrum. The expansion of the scalar spectrum in
) |l 5 9*P terms of Legendre polynomials was first suggested by
St = 2PV F 20 omn 5 (100 Herring™ who derived an equation fo¥ in axisymmetric

turbulence using Kraichnan’s direct interaction approxima-
which was first derived by Kraichnaf.The Fourier trans- tion (DIA). The s-correlated model can be formally recov-
form of (10) is easily found by usingd/drj—ikj, r;  ered from DIA in the limit that the Greens’ function
—idldk; and then converting to axisymmetric variables G(x,t|t;y,t|t,)—the scalar amplitude ak(t) arising from a
where #=cos '(k-e;/|k|) is the angle between the wave §-function source at, located in the fluid element that ar-

vectork and the vertical axis: rives at /,t)—becomess®(x—y).3? Thus Eqs(15) and(16)
can be considered as a special case of the more general re-
ow 5 |v] .
i —2DkV + ?T(\If), (11)  sultsin Ref. 41.

As discussed in Sec. lll we are interested in the solution

5 2 of the correlation function up to approximately second order
T(\If)zkza v +4kﬂ+ 29099 £+ i (12) in r3 which corresponds to expanding to j=2. The axi-
ak? gk sing 90 962 symmetric (=1,2) contribution to the spectral density’,

. . . .. can be written
The isotropic solution of Eq$11) and(12) appeared first in

Ref. 38 and is WK, ) =Wk, ) +i WK, ),
3/2 _ (17)
s = —5 k0w i = 2 ETN e
(2m)%y] K2 | R 4aly Ty a2
X _ -1 1/2
= %k 31+ rk]exp — k), 13 - {xlyl ™ 2n
Zaly < LI AKIEXR=MO 13 WK, 1) = KegAOPy(), (19

- 3(277)3/2 K32

such that lim_oW&(k,u)=Cx/(4my)\32 k32"
whereK is a modified Bessel functiory(z)~z? is the non- X P,(u) and  lim_ oWk, u)=x/ (47| y])zn "2k ™4
homogeneous scalar dissipation rate ands a diffusive X P;(u), and wherev=/57/2~3.775. The constan{ in
length scale that is proportional to the Batchelor length. FoEq. (18) is of fundamental importance in what follows and
an isotropic scalar field the corresponding scalar spectrurplays the role of the Kolmogorov constant for the nonhomo-
E(k) is defined asE=4xk?¥. Therefore in the rang&  geneousimaginary component of the spectral density. As
<A1, E(k)=x|y| k! which is the usuak ! viscous-  discussed in Sec. lll the nonhomogeneous compowéfitis
convective scaling. assumed to scale ak times the homogeneous components

A=(6D]y|" 12 (14
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Wiso or W& as jllustrated in Eq(18). The resulting-space =k, this restriction become®*%(k,)=W&%(k, ,u=0,+1).
scalings are given by E@17): r andr®?"are close to the  For example, using the spectid®*=k 3, the maximum al-

andr? scaling estimated in Sec. Il lowed anisotropy \IfaXI B,(k)Po(x) where By(k)
=2k %k, and the |dent|t|es for the 1D horizontal spectra
B. Inertial-convective regime solution &'k ) =4[y kdk¥®(k) and (k) =m[; kdk(1
A solution for ¥ in the inertial-convective subrange  —3k2/k?)B,y(k) gives ¢(k)=4mk, ' and ¢(k,)
> 7 is facilitated by the fact that the molecular diffusivity = —87/15k, k2. Thus the maximum possible change in the

can be ignored in this regime. Evaluating E§) with (9) horizontal spectrum which occurs at the boundegyk,, is
and velocity correlation coefficierff(r)=1—a,r?® where only % or about 13%! The physical interpretation of these
a5 is an arbitrary constant gives results is straightforward. The solutidn"g‘{x' represents a con-

servative transfer or rotation of scalar variance alongethe

2
[4r25mn_rmrn]£:0a axis, and thus in the absence of a source, little rotation is
I mdly possible before the variance becomes depleted-=ad or
which can be Fourier transformed as before: +1. The source ternmi, therefore, pIays a crucial role in
5 5 balancing this anisotropic conservative spectral transfer.
12\If+3k2ﬂ+16k£ acosgowv W The equation fol in the viscous regimél0) including
k2 ok ' sing a6 g2 the source tern(7) is
Expanding the solution in terms of Legendre polynomials  d® |yl PR
gives szszcer ?[Zrzémn—rmrn]m
‘I’(k,M):jZO Bj(k)Pj(u), +M[2r 2530 rﬂn]?
25 Fourier transforming as per E¢L1) produces
0= 3k2—+16k——[4j( 1)-12]B;,
v S b7 |7|
—r = T 2DKY S T(W) — = P(W),
with solution B;=k = c;k "D +d;k" V] where w(j) at
={169+124j(j +1) 12]}1’2/6 andcJ andd; are arbitrary X _
constants. In general both andd; are nonzero however, in P(\P)_cosﬂ kﬂ ﬂ+ 2C_°99_ sing | oW
the small k viscous-convective regimé& *>k*0) and ok? ok | ksing kcos| 90
therefore without loss of generality we can set0. Note _ 5 )
that the scaling of the isotropig £ 0) solutionW's°~k~3 is N sing 9°¥ N 24 ‘1’]
invariant under a change in the velocity spatial correlation, a cod d0dk K yp?

manifestation of the fact thab = constant is the trivial solu-
tion of Eq. (6) independent of the effective diffusivity. In WhereT('¥) is given by(12). The equation for the spectral
addition, the scaling of thej 1) solution W™~k * also ~ contribution¥*from the sourcd is

remains invarian't. The scalipg & (j=2) changes only JPsT Iyl |y|

slightly from a viscous scaling ofv 5.275 to an inertial =—2DK?PS+ — T(llfsm) —P>{IP¥). (20
scaling of — (13+ /313)/6~ —5.115. Because of the steeper t

spectral decay of the axisymmetric contributigh’®>>Ww2'  Using (18) the source term becomes

for k> 71, and therefore, only thk >!1°scaling makes a i i i

significant contribution to the overall spectral density. Using ~ P(W1™) =i[Pc(¥) )cos 6+ Py(¥{™)sint 6],

the approximatiork %1%~k ~° W& can be written

5/2
cax (e = K,
TRk, = gy N K PR, (19 3(2m)* | k
which corresponds exactly with thespace scaling of the P (\IfaXi X %2
S |

last two terms in Eq(8). Equations(18) and(19) are used in )= 3(2m)%7 y| @Km()\k)'

the rest of this work to represent axisymmetric viscous- _
convective Sca“ng_ Note that for small k, PC< PS and Ps(q/?x')

=57x/(4m|y|)\~2k°. Therefore the smak, steady-state
equation analogous t0) is

: S{x 5.
The contribution of the axisymmetric, real tenin&*' to TP+ |y| A%k~ ®sinf6=0. (21

the overall spectral density in the absence of the

condensation/evaporation sourcés fundamentally limited ~Assuming a solution of the form¥s’=(A+Bu?)k ° and
by the restriction REF}=0. Using P,(u)=(3u?—1)/2  evaluating (21) gives —2B=—10A—4B=5/x/(4m|y|)
and an inertial-convective/viscous-convective boundary at X\ 2 or

V. THE AXISYMMETRIC SOURCE |
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. o, 1, aljty, i.e.,X/.(47-r| ?/|) WhgreX=X0, |n (13) which agrees well
Wk, p)=— W)\ K §(5M -1). with numerical simulationg®3! Phillips*? used(24) whereF
is the spectrum of the conventional Reynolds stress term
Not surprisingly, this solution is invariant under the transfor-<bw>a<b>/az andb is the buoyancy—gu/(i), along with
mation from inertial to viscous velocity correlatiorfsaot  the earlier results of Lumléy to derive the buoyancgtem-
shown. Assuming that the sum of the axisymmetric, realperaturg spectrum in a stably stratified fluid. Phillips’ deri-
terms W (19) and W*° is approximately isotropic gives vation was corrected by Weinstdfkwho showed that the

c,=5/3(, and the resulting spectral density is Lumley—Phillips buoyancy subrange theory predicts the tem-
_ Y ¢ perature spectrum is proportional t& 2 at small
P psie= — pppy] §A‘2k‘5. (220  k—consistent with experiments. Recently, | uggd) to de-

rive the magnitude oE in the viscous-convective subrange
Thus axisymmetric production of scalar variancE*(® is  where the productiof¥ is caused by particle inertfa.

balanced by a conservative axisymmetric transfer of scalar The determination of in this study is complicated by
variance &) producing a resulting spectral density that is the fact that an expression is needed that is accurate in both
isotropic. An assumption of perfect isotropy is not necessaryhe viscousk> "1 and inertialk<# ! regimes. The vis-

to prevent the spectral density from becoming negativecous regime fornt, follows from Eq.(21):

However, a small degree of anisotropy X'+ W has i 50y

little effect on the results and conclusions in the following = Zf i 22 N 2= 5gj

sections. Combining Eqg$13) and (22) gives the resultant Fulk) =2k 0 Smadalzﬂ)\ k- Ssirt o

spectral density

A A . _ 100x ~2-3
W (k,p)="PK) + [ VR WY (k) +iW (K, p, L), “ 9 M '
X s The scale break between the viscous and inertial regknes
4wyl k™ [1+Mk]exp(—X\k) is usually taken to be around G;1*. Thus fork<k; we can
expect the inertial scalingF;(k)~k %% where F;(k)
X é)\,zk,5+iq,axi(k 0) =F,(k;). The resulting expression for using Eq.(24) is
4my 3 e
_ 5
where ¥ is given by (18). The spectrum E(k) Xo— ixg/s [k=2P—(213)k %3], k=k;,
=27k?f1 du¥(k,u) is therefore (0= 3Nk
S3¢Xo
_ X -1 o X S o s ——2= k>k;.
E(k)= B k™ 1+ Nk]exp(—Ak) ] 3)\ ke, (23 Xo N i
Comparing Eq(23) with (8) we find thatc,=0 as a result of (25
the isotropic assumptiof@bove. The Kolmogorov-like con- The unknown constanf can be determined from Eq.
stant first introduced in Sec. IV A is determined in the next (25) in principle using the new liquid water data in Ref 1.
section. One source of uncertainty, however, is the magnitude of the

Obukhov—Corrsin constarn® in the inertial-convective re-
gime parametrization

— —1/3;,—5/3
The only free parameter in the present model is the fun- Eiolk)=Bxice k™ (26)
damental constant defined by Eq(18). Like the Kolmog- wheree is the energy dissipation rate ang.=constant is
orov constant{ should asymptote to a well-defined value in the inertial-convective range scalar dissipation rate. Since the
the large Re limit. Since independent informationfois not ~ change inB due to condensation/evaporation is unknown, we
yet available in the literature, its value is chosen to besassigng its inert passive scalar value &f;. Using the data

VI. DETERMINATION OF ¢

reproduce the experimental data shown in Fig. 1. in Ref. 1 | estimate that.= x(kp) = xo/14 which gives
The time-evolution equation for the spherically Aer 23 o
integrated  scalar covariance  spectruni (k) = 2k? {= BNk, = Dk, (27)
l .
X [T 1duW (k,u) may be written &5 wherek, is the wave number of the scale break between the
JE(K) ax(k) inertial-convective and viscous-convective regimes. Substi-
G K —2DK?E(k) +F(k), tuting Eq.(27) into (23) with the identificationy— x, gives

where F(k) is the production spectrum of scalar variance. E(k) = ﬁkfl[lJr)\k]exp(_)\k)
Solving for x in the steady state for the ranges\ ~* gives k%
13 X0

(0~ xo fk F(&)de, (24 -k

ki ky 7%= (2/3)k; %7 k3. (28)

where xo=2D [;k?E(k)dk. Equation (24) was used by The final step in the specification Efis the determination of
Mjolsness$® with F=0 to derive the constant of proportion- k,. Numerical simulation®3! of the viscous-convective
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subrange with-=0 suggest that the scale brelak occurs,
naturally, at the intersectiok;.(k,) =E(ky) which can be
calculated numerically froni26) and (28). Using 8=2, k;
=0.15" ! and recalling from Sec. IV A thay= —(1/q)7-;]1
where q=5.5 producesk,=0.047" 1. Thus the predicted
scale break between the inertial-convective and viscous-
convective regimes is at somewhat larger scales than the
usual break ak,= (3/q)%?7~1~0.05; 1. This extension to
larger scales can be contrasted with the effect of particle
inertia. which suppresses near-inertial viscous-convective
scaling? In the atmosphere wherg~®(1mm), the pre-
dictedr-space scale break occurs around 25 cm which is an
order of magnitude smaller than the transition estimated by
Daviset all to occur at 2—5 m. This apparent discrepancy is
discussed further in the next section. Equatid®s)—(28)
complete the determination &(k) as a function of the pa-
rametersyo, ||, N, ki andk, .

E(k) /%
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FIG. 2. Plot showing the inertial-convective, production and viscous-

convective subranges predicted by the present nidtig. (25)—(28)]. The
production subrange begins laj=0.047"* and is associated with increas-

VII. SPECTRA AND DISCUSSION

ing scalar production and dissipation. The increasg iby a factor of 14

] ) ] o presented at the top of the figure is chosen to reproduce the 1D LWC
Before embarking on a discussion of the predictions ofspectrum measured during SOCEX and shown in Fig. 3. Normal inertial-

the present model, it should be emphasized that these prediganvective/viscous-convective scaling is also shown for comparison. The

tions are highly dependent on the value of the Kolmogorov-
like parameterl [Eqg. (18)]. In particular, in the limit{—0

figure is generated using=0.01 nf s 3.

normalk™ viscous convective scaling is recovered. Despit€ation or clumping of inertial particles in regions of high
this deficiency, the present model provides an appealing anatrain and low vorticity in a turbulent flow and, therefore, by
lytical framework within which the anomalous scaling of gefinition, is a manifestation of a nonuniform particle distri-

cloud LWC can be explained.

In the region k,=0.047 ')<k=0.35;" ! the scalar
dissipation rate increases with increaskgccording to Eqg.
(25). A typical atmospheric value for is ~1 mm, and
therefore, this “production subrange” corresponds to scales
of about 3 cm up to 30 cm. At smaller scales<(3 cm) a
normal viscous-convective subrange exists associated with
constant scalar dissipation rajg and at larger scalesr (
>30 cm the cascade of variance from larger to smaller
scales dominates the dynamics. In the production subrange
the spectral scaling changes from a negatively sldpet
scaling to a positively slopeki 3 scaling[Eq. (28)], reflect-
ing the production of scalar variance in the vicinity lgf.

The scalar spectrum given by Eq25)—(28) is shown in
Fig. 2 along with the change in scalar dissipation rate
x(K)/xic- The increase in the variance beginninkatky, is
associated with a corresponding increase in the scalar dissi-
pation rate. Outside of the production subrange normal
inertial-convective and viscous-convective behavior is evi-
dent. The bump in the scalar spectrum in the production
subrange—a reflection of increased variance in this
regime—is superficially similar to the spectral bump caused
by particle inertia(Fig. 5 in Ref. 4. The location of the
spectral peak a|t<p~0.0331fl in the present model repre-
sents increased variance at scales one order of magnitude
larger than preferential concentratioky, ¢ 0.3 1), a rela-

log, 0(k,)

20
1

bution. In contrast, the increased variance exhibited by the
present model assumes a uniform particle distribution but
allows for variable particle mass due to condensation and
evaporation.
The 1D horizontal spectrum defined byp(k,)
=f;°xk*1dkE(k) is shown in Fig. 3 along with the experi-
Mental data from Ref. 1. The good agreement between the
modeled and observed spectra far=0.047 !

is not

15

10

14!

1

Inertial—-
Convective
Subrange

RIGIZ

Viscous—
Convective
Subrange
Production
Subrange

0.00001

0.001
kim

tionship mirrored by the behavior of the condensation/rig. 3. Comparison of the ensemble-averaged 1D LWC scalar spectrum
evaporation induced velocityru(0)u(r))/z compared to the measured during SOCEX and the present mod¢Egs. (25-(28)]. The

particle inertia induced velocity 7u(0)V-u(r)). Despite
some similarities between Figs. 2 and 5 in Ref. 4, the physic

factor of 14 increase iry(k=k,) in the production subrange is chosen to
groduce good agreement betweg(k,) and the data at large, . The dis-
Grepancy in the modeled and observed spectra kigaf.008, ! may be a

Of c_ondens_ation/evaporation_and preferential Qoncentraﬂon iBsult of the unnaturally sharp transition between the inertial-convective and
distinctly different. Preferential concentration is an accumu-production regimes shown in Fig. 2 and used in the generatiap(k).
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fortuitous—the relationy;.= xo/14 used in Sec. VI to deter- Of the restriction that the real part df be positive. How-
mine the unknown constagtwas chosen to produce a close €Ver, in the presence of condensation/evaporation the possi-
correspondence between the two spectra in this regionk Forbility of axisymmetric transfer balancing axisymmetric pro-
in the range 0.002 1<k<0.047 ! the modeled spectrum duction of variance to produce an isotropic, homogeneous
falls somewhat below the experimental data. The plateau iontributionE (k) ~k~2 exists and is explored.

the modeled spectrum ne&r=k, is associated with the Under the assumption of spectral balance, an expression
sharply defined local minimum exhibited Wy in the same for ¥ is derived that reproduces the spectral behavior of new
region and shown in Fig. 2. It is very likely that the real experimental data of cloud liquid water densityhich ex-
transition between the inertial-convective and production rehibits anomalous viscous-convective scaling. The modeled
gimes is much smoother than the prediction of the preseripectrum has one adjustable constant reflecting the magni-
model which may explain the discrepancy between the 10ude of the imaginarynonhomogeneouipart of the spec-
spectra shown in Fig. 3. The plateau in the modeled spedfum; the value of this constant is chosen judiciously so that
trum neark=k, may also explain the discrepancy betweengood agreement is obtained between the observed and mod-
the 25 cm scale breakk{=0.04,"1) predicted by the e€led horizontal spectra. The present model predicts a produc-
present model and the break estimated by Davial! from  tion subrange, 0.04 '<k=0.35; ', where the scalar dis-
experimental data(Fig. 3 to occur at 2-5 m K, sipation rate increases with increasikg Associated with
~0.002;~1). Certainly, sinces(k,) is a projection of the increased dissipation is a change in the spectral scaling from
actual 3D spectral densit¥ (k), an abrupt change in the the usual negatively slopeki® ! viscous-convective scaling
scaling of ¥ (or E) appears smooth and gradual when pro-to an anomalous positively slopé&d 2 regime. The resulting
jected ontok,. Thus, the appearance @fk,) is not neces- scalar spectrum in the production subrange has a well de-
sarily a reliable indicator of the behavior &f(k). Overall,  fined bump reflecting increased variance due to condensation
the experimental data in Ref. 1 does support the existence @nd evaporation, similar to the behavior exhibited in the
a production subrange predicted by the present m@®k  spectrum of inertial particleThe scale break between the
(29). inertial-convective and productidiviscous-convectivesub-

The key assumption in the derivation of the productiontange occurs at 0.64 '—slightly smaller than the usual
subrange is the existence of the imaginary spectral densidjansition near 0.0 * for an inert scalar—although the
v (18) that goes agk 4u for small k. BecauseW break in the 1D horizontal spectrum remains consistent with
scales with an integer exponent thepace contribution can- data and Davigt al's' somewhat larger-scale estimate. De-
not be calculated without knowledge of a transition from thespite some uncertainty in the vicinity of the inertial-
k™% scaling to a different(noninteger scaling regime. convective/production subrange transition, the present model
Clearly, more information on the spectral density of liquid Provides a convenient analytic framework within which the
water in clouds from numerical simulations is needed to ashonhomogeneous, anisotropic behavior of condensation
certain the validity of the scaling and magnitudelg? used ~ cloud spectral scaling may be explored.
in the present model. The initial success of the mean-field model not with-
standing, a number of important questions remain unan-
swered. In particular, the predicted anomalous viscous-
convective scaling is based on the assumption of a rather

A mean-field model for the effect of condensation andlarge nonhomogeneous contributiontothat is suggestive
evaporation on passive scalar statistics is developed that ref a strong vertical coherence. If this significant nonhomo-
lates the phase change of the condensate to the vertical stri@@neous component exists, it should also be evident in the
ture of its first and second moments in the cloud. Unlike inertinertial-convective regime scaling. Efforts are currently un-
scalar statistics with an initially imposed scalar gradient, theder way to investigate nonhomogeneous, inertial-convective
new model predicts nonhomogeneous vertical densityegime spatial correlations using the mean-field model. Fu-
fluctuations—in good agreement with atmosphericture studies should lead to an improved understanding of the
measuremendsi® and numerical simulatiof¥ *3that show presence of intermittency and anisotropy in the statistics of a
increasing liquid water fluctuations with increasing height inpassive condensate which would be of particular relevance to
clouds. As a first step towards understanding the effect othe atmospheric science community.
condensation/evaporation on passive scalar statistics, an
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